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ABSTRACT

The purpose of this paper is to present a new primal
extreme point algorithm for solving assignment problems which
both circumvents and exploits degeneracy. The algorithm is
based on the observation that the degeneracy difficulties of
the simplex method result from the unnecessary inspection of
alternative basis representations of the extreme points. This
paper characterizes a subset Q of all bases that are capable of
leading to an optimal solution to the problem if one exists.
Using this characterization, an extreme point algorithm is
developed which considers only those bases in Q. Computational
results disclose that the new algorithm is substantially more
efficient than previously developed primal and primal-dual

methods for assignment problems.

extreme point ("simplex'")
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1. INTRODUCTION

In spite of the notable gains in network solution tech-
niques [1-5, 7-12, 14-16] since 1969, there is still a major |
area that remains to be explored. This is the area of design- g
ing appropriate techniques for accommodating and taking advan- i
tage of degeneracy within primal simplex-based algorithms.
Computational testing has shown that approximately 90 percent
of the pivots are degenerate for assignment and transshipment
problems with more than 1000 nodes. Thus far, no computational

schemes have been developed to respond to this situation, either

by an effort to circumvent degenerate pivots or to make them
judiciously. The need for such procedures has become incrcas-
ingly urgent because practical problems are being formulated
which involve several thousand nodes and hundreds of thousands
of variables.

The purpose of this paper is to present a new primal extrcme
point algorithm for solving assignment problems which both cir-
cumvents and exploits degeneracy. The algorithm is based on
the observation that the degeneracy difficulties of the simplex
method result from the unnecessary inspection of alternative
basis representations of the extreme points. The algorithm can
be viewed as a variant of the independently developed method of
Cunningham [ ¢], specialized to take advantage of the bipartite
structure of assignment networks. One of the principal features
of this algorithm is a strong form of convergence that limits
the number of degenerate steps in a far more powerful way than

)

achieved by "lexicographic improvement," as for example, in

1
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customary LP perturbation schemes.

Each basis examined by this algorithm is restricted to
have a certain topology. We show that if an assignment problem
has a feasible solution, then an optimal solution can be found
by considering only bases of this type. The major mathematical
differences between the AB algorithm and previous primal extreme
point methods are (1) the rules of the algorithm automatically
(without search) assure that all bases have the special topo-
logical structure, and>bypass all other bases normally given
consideration; (2) the algorithm is finitely convergent without
reliance upon external techniques (such as lexicography or per-
turbation); and (3) in certain cases degenerate basis exchanges
may be recognized prior to finding the representation of an in-
coming arc.

The AB algorithm also has special advantages for computer
implementation. Specifically, the computer memory required to
store the basis data is roughly half that required for other
specialized algorithms for the assignment problem. In addition,
the computational results reported in the final section demon-

strate the notable efficiency of the AB algorithm.

2. BACKGROUND MATERTIAL

An n x n assignment problem may be defined as:

i b
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where I is the set of originnodes, J is the set of destination é
nodes, A is the set of arcs, and egs is the cost of a unit flow
on arc (1,j)(or in alternative terminology, of "assigning'" origin
node i to destination node j).

The dual of the assignment problem may be stated as:

Maximize ¢ Ri o]
iel jed J

subject to:

Ri + Kj £ cij c

(10T e A
where Ri and Kj are called the node potentials of the origin
and destination nodes, respectively.
An understanding of the results of this paper relies on
a familiarity with graphical interpretations of the assignment
problem and how the primal simplex method has been applied to
this problem. While these ideas are relatively direct they,
unfortunately, are not succinctly itemized in any single refer-
ence and will be summarized in this section for completeness.
As our preceding terminology suggests, the assignment
problem may be represented as a bipartite graph, consisting of
a set of origin nodes with unit supplies and a set of destina-
tion nodes with unit demands. Directed arcs from origin nodes
to destination nodes accomodate the transmission of flow and

incur a cost if flow exists. The objective is to determine a

set of arc flows which satisfies the supply and demand requirc-

ments at minimum total cost.




The bases of an extreme point (simplex) method for solving
an nxn assignment problem correspond to spanning trees with 2n-1
arcs. A basic solution assigns exactly n of the basic arcs a
flow value of one and the other n-1 arcs a flow value of zero
(all nonbasic arcs receive flows of 0.). Therefore each basis
solution is highly degenerate (i.e. contains a large number of
zero flows on basic arcs). This often causes a primal extreme
point method to examine several alternative bases for the same
extreme point before moving to an adjacent extreme point.

In the graphical representation approach, the bases of
the simplex method of assignment problems are normally kept as
rooted trees [7,9,11,12,16]. Conceptually, the root node may
be thought of as the highest node in the tree with all of the
other nodes hanging below it on directed paths leading downward
from the root. Those nodes in the unique path from the root to
any given node i are called the ancestors of node i, and the im-

mediate ancestor of node i is called its predecessor.

Figure 1 illustrates a rooted basis tree, the predecessors
of the nodes, and the basic flow values, for a 4-4 assignment
problem. Notationally, 0i denotes the ith origin node and Dj
denotes the jth destination node. The number beside each link
(arc) in the basis tree indicates the flow on this arc imparted
by the basic solution. Predecessors of nodes are identified in
the NODE/PREDECESSOR array. For example, as seen from this array,
the predecessor of origin node 2 is destination node 1. The root

of the tree is node 01 and has no predecessor.




NODE  PREDECESSOR

07 ! None :
0z | D1 |
03 Pr
04 B2
D1 01 !
D2 01

D3 - 1 :
Da 02 }

Figure 1- Rooted Basis Tree

It is important to note the direction of the links
in Figure 1 correspond to the orientation induced by the
predecessor ordering and do not necessarily correspond to
the direction of the basis arcs in the assignment problem.
However, the direction of the basic arcs are known from the
bipartite property of the assignment problem; i.e., all
problem arcs lead from origin nodes to destination nodes.

In subsequent sections the term 0-D link and D-0 link

will be used to refer to links in a rooted basis tree that
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are directed from an origin node to a destination node and
vice versa, respectively, according to the orientation im-
parted to the basic arcs by the predecessor indexing. For
example, in Figure 1, 02-D4 is a 0-D link while D1-02 is
a D-0 link. Additionally, basic arcs with a fiow of one or
zero will be referred to as 1l-links and 0-links, respectively.

We will now briefly review the fundamental pivot step
of the simplex method in the graphical setting. Assume
that a feasible starting basis has been determined and is
represented as a rooted tree. To evaluate the nonbasic arcs
to determine whether any of them "price out" profitably,
and therefore are candidates to enter the basis, it is nec-
essary to determine values for the dual variables Ri’ el
and Kj, jed, which satisfy complementary slackness; i.e.,

which yield Ri + Kj = c.. for each basic arc.

%
There is a unique dual variable associated with each

node in the basis tree. For this reason the dual variables--

or their values--are often referred to as node potentials.

Because of redundancy, in the defining equations of the as-

signment problem (and in network problems generally), one node

potential value may be specified arbitrarily. The root

node 1is customarily selected for this purpose and assigned

a potential value of zero, whereupon the potentials of the

other nodes are immediately determined in a cascading fashion

by moving down the tree and identifying the value for each

node from its predecessor using the equation Ri A =

<o
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Highly efficient labeling procedures for traversing the tree
to initialize and update these node potential values are des-
ceibed in [9,11.52,16].

A feasible basic solution is optimal when the nonbasic
arcs all satisfy the dual feasibility condition Ri + Kj < Ci}'
If the problem is not optimal, then an arc whose dual constraint
is violated (i.e., for which Ri + Kj >Cij) is selected to enter
the basis. The arc to leave the basis is determined by: (1)

finding the unique path in the basis tree, called the basis

equivalent path, which connects the two nodes of the entering

arc, and (2) isolating a blocking arc in this path whose flow
goes to zero ahead of (or at least as soon as) any others as a
result of increasing the flow on the entering arc. In the
basis equivalent path all arcs an even number of links away
from the entering arc are called even arcs, and all arcs an odd
number of links away are called odd arcs. An increase in the
flow of the incoming arc causes a corresponding in;rease in the
flow of all even arcs and a correspondiné decrease in the flow
of all odd arcs. Thus, if an odd arec already has a 0 flow,
then such an arc qualifies as a blocking arc and the incoming
arc cannot be assigned a positive flow value.

To illustrate, assume that the starting basis is the one
given in Figure 1 and the entering arc is (O4,D4). The basis
equivalent path for (Ou,D4) is D4-02-D1-01-D2-04. (Note that

this path can be easily determined by tracing the predecessors

of O4 and D4 to their point of intersection [7,9,11,12]. As
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flow is increased on the entering arc the flow on the arc
(01,D1), which is an odd number of links away, must be
decreased. However, its flow is already zero, and hence
(01,D1) qualifies as a blocking arc. When arc (04,D4) is
brought into the basis, arc (01,D1) must be dropped (since
there are no other blocking arcs in this case). In aadition,
the pivot (or basis exchange) is degenerate since no flow
increase occurs.

Once the entering and leaving arcs are known, the
basis exchange is completed simply by updating the flow val-
ues on the basis equivalent path and determining new node
potentials for the new basis tree.

Only a subset of the node potentials change during a
pivot and these can be updated rather than being determined
from scratch. This fact will play a crucial role in proving
convergence of the algorithm to be developed.

To update the node potentials, assume that the nonbasic
arc (p,q) is to enter into the basis and the basic arc (r,s)
is to leave the basis. If arc (r,s) is deleted from the
basis (before adding arc (p,q)), two subtrees are formed. each
containing one of the two nodes of the incoming arc (p,q).
Let K denote the subtree which does not contain the root node
of the full basis. The node potentials for the new basis
may be obtained by updating only those potentials of the

nodes in K, as follows [9]. If p is in K, subtract

§ = RD + Kq = Cpq >0 from the potential of each origin node

i
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in K and add § to the potential of each destination node
in K. Otherwise, q is in K and -8 is used in the above op-

erations.

3. ALTERNATING PATH BASIS DEFINITION AND PROPERTIES

The new alternating basis (AB) algorithm for assignment
problems developed in this section is similar to the primal
simplex method as described above. 1Its major mathematical
distinction is that it does not consider all feasible bases
to be candidates for progressiig to an optimal basis. That
is, the simplex method allows a feasible spanning tree of
any structure whatsoever to be included in the set of those
that are eligible for consideration as "improving bases"
along the path to optimality. However, it will be shown
that if an assignment problem has an optimal solution then
it also has an optimal solution with a unique basis tree
structure, dubbed the alternating path (AP) structure. Fur-
thermore, we will show that it is possible to restrict at-

tention at each step to bases with this structure. In

particular, the AB algorithm is a procedure designed to ex-
ploit the properties of the AP basis structure in a manner
that substantially reduces the impact of degeneracy, the

number of arithmetic operations, and the data storage loca-

tions required to solve the assignment problem.

Definition: A rooted basis tree for an assignment problem is

an alternating path (AP) basis if
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1. The root node is an origin node.
2. All 1-links are 0-D links.
3. All 0-1links are D-0 links.
An example of an AP basis is shown in Figure 2.
The "alternating path" designation is applied because
every path from a node to any ancestor node in the tree, or
vica versa, is an alternating path of 1l-links and 0-links.

We will chiefly be concerned with paths from nodes to their

ancestors (as would be traced along a succession of predeces-
sors). A path that begins at an origin node and ends at an
ancestor destination node will be called "O0-AP" because it
begins and ends with a 0-link. Similarily, a path that be-
gins at a destination node and ends at an ancestor origin

node will be called "1-AP" because it begins and ends with

<>
1

1

<
0

\

. G

1

D3
L 0
02 03
1 1

Figure -2-An AP basis structure for a Uxi4 assignment problem

o Uty ~a l-link.._
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Remark l: The 1-links of any feasible assignment solution can
be augmented by 0-links to create an AP basis (e.g., by adding
0-1links from destination nodes to origin nodes in any fashion

so that every origin node except the root node has exactly one
entering 0-link.) Note if the arcs corresponding to the added

0-links do not exist in the assignment problem then a large

(big M) cost is assigned such links.

Remark 2: There are many assignment bases for a given feasille
solution that are not AP bases. (For example, any basis that
has more than one 0-link incident to an origin node is not an
AP basis regardless of the origin node chosen as the root.

Figure 1 is an example of such a basis.)

Remark 3: An artificially feasible AP basis may always be con-
structed for an nxn assignment problem by assuming that arcs
exist from each origin node to all destination nodes where the
non-admissible (artificial) arcs have a "big M" cost. The pro-
cedure is as follows.

Initially set J':ﬂ, B S and a=dioy S Gato step 1.

1. Let r be a destination node such that C. . = min SR

jed-J'
i,3) & B
\J 1
Set BRECIEr e B’Xir: by and d =J U {r}.

2. If i # n, set i= i+l and go to step 1. Otherwise set

A

i=2, J =p, B'=B, and go to step 3.

S e,




12

Let r be a destination node such that c;p, = min c..
j€J~J' »
{1,0) ¢ B*
1 1 . L 1
Se ENR=N G n) N K3 g, and J = J ou 1§203,70eB}
4. If i#n, set i= i+l and go to step 3. Otherwise go to
Step 9.
5. Using B, create a spanning tree rooted at node 1. The
resulting spanning tree will be an AP basis.
Proof:

The remark follows by construction.

Definition: Relative to any AP basis, a nonbasic arc is called

a downward arc if it connects a destination node to an ancestor

origin node, an upward arc if it connects an origin node to an
ancestor destination node. An arc that connects an origin node
and a destination node that do not have either of these ancestral
relationships is called a cross arc. (Note that these are the
only three possibilities for a nonbasic arc in a bipartite net-
work. )

The next two remarks point out some important properties
that can be exploited when applying the simplex method to an

AP basis.

Remark 4: When the simplex method is applied tc an AP basis,

a pivot is nondegenerate if and only if the entering nonbasic

arc is a downward arc.
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Eraad:

The remark relies on the fact that a nondegenerate pivot
causes the flows on the basis equivalent path to decrease and
increas= in a strictly alternating fashion on the odd and even

links. The "if" part of the remark then follows by observing

that a downward arc is 1-AP. The "only if" part of the re-
mark follows from two observations, first that an upward arc
is 0-AP, and second that a cross arc has a 0-link above the
origin node incident to the entering arc (and this arc is con-
tained in the basis equivalent path adjacent to one of the

nodes of the entering arc).

Remark 5: When the simplex method is applied to an AP basis,
the pivot can be carried out to give a new AP basis for any
entering nonbasic arc simply by dropping the unique link in
the basis equivalent path attached to the origin node of the

entering arc.

Erodi:
The remark follows by observing that an AP basis results
if a rooted tree is constructed with its root node equal to

the root node of the old AP basis.

Alternating Basis (AB) Algorithm

On the basis of the preceding remarks the rules of the
AB algorithm can be stated in an extremely simple fashion.
1. Select any feasible AP basis for the assignment prob-

lem (e.g. using Remark 3).

e Sl i o M
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2. Successively apply the simplex pivot step keeping
the root node fixed and picking the link to leave

according to Remark 5.

By means of these rules, the foregoing observations im-
ply that the AB algorithm will proceed through a sequence of
AP bases, bypassing all other basis structures. Further,
these remarks show that a "next" AP basis is always accessi-
ble to a given AP basis, so that the method will not be com-
pelled to stop prematurely without being able to carry out
a pivot before the optimality (dual feasibility) criteria
are satisfied. The issue to be resolved then, is whether the
method may progress through a closed circle of AP bases with-
out breaking out, and thus fail to converge. We will show
that this cannot happen, and that in fact the AB algorithm

is finitely converging without any reliance upon "“externa."

techniques such as perturbation, as is the ordinary simplex
method. Moreover we will show that the form of convergence
of the AB algorithm has a particularly strong character,

in which origin node potentials and destination node poten-
tials each change in a uniform direction throughout any se-

quence of degenerate pivots.

These results do not require any restrictions on the

choice of the incoming variable. TFor example it is not nec-

essary to cull through pivot possibilities in an attempt to

find degenerate pivot candidates. We now complete their

foundations as follows.
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Lemma: A basis exchange with the AB algorithm gives rise
to a new AP basis in which the new node potentials satisfy
the following properties:

a) For a nondegenerate pivot: The changed origin node

potentials strictly increase and the changed destination
node potentials strictly decrease.

b) For a degenerate pivot: The changed origin node po-

tentials strictly decrease and the changed destination node

potentials strictly increase.

Proof:

As already discussed, the node potential values that
change may be restricted to those associated with the sub-
tree K. By this procedure, if subtree K contains the origin
node of the entering arc then all the origin node potentials
in K are decreased and all destination node potentials in

| | K are increased. The reverse is true if the destination
node of the entering arc is in subtree K. The lemma then
follows from Remarks 4 and 5, which imply that subtree K
always contains the destination node of the entering arc for
a nondegenerate pivot and the origin node of the entering

arc for a degenerate pivot.

Our main result may be stated as follows.




Theorem:

The AB algorithm will obtain an optimal solution (or
determine that the problem is infeasible) in a finite number
of pivots, regardless of which dual infeasible arc is chosen
to be the entering arc, and without any reliance on pertur-

bation or lexicographic orderings.

Proof:

It is sufficient to show that the number of degenerate
pivots that occur between any two nondegenerate pivots must
be finite. This follows from the second half of the lemma.
Note that the node potential assigned to the root node never
changes when the node potentials in subtree K are updated.
Thus given the constant node potential for the root, the
other node potentials are uniquely determined for each suc-
cessive basis (regardless of the procedure by which they are
generated), and the uniform decrease of origin node potentials
and the uniform increase of destination node potentials
(for the potentials that change) implies that no basis can
ever repeat during an uninterrupted sequence of degenerate

pivots. This completes the proof.

4. COMPUTATIONAL CONSIDERATIONS

Some of the unique computational features of the AB

method include:

a) It explicitly bypasses all "non-AP" basis solutions




without requiring any imbedded search procedure or computational
tests.

b) It allows degenerate pivots to be recognized and per-
formed without computing the representation of the entering
arc. This can be accomplished by using the 'cardinality function"
proposed by Srinivasan and Thompson [17] which indicates the
number of nodes in the subtree below a given node. In particu-
lar, upward arcs and some cross arcs can be detected simply by
comparing the cardinality function values of the nodes associated
with the entering arc. That is, denote the cardinality function
by f and the entering arc by (p,q). If £(p)<f(q) then arc (p,q)
is either an upward arc or a cross arc. In either case the pivot
is degenerate and no flow updating is required. Remark 5, fur-
thermore directly specifies the link to leave the basis. Thus
a degenerate pivot simply involves checking the cardinality func-
tion, inserting and deleting the appropriate links, and updating
the node potential values.

c) Similar streamlining can be achieved for all other pivots.
Specifically, if f(q)<f(p) then the appropriate step is to find
the unique node z on the path from q to the root node such that
f(z)2f(p). If z#p then arc (p,q) is a cross arc and thus the
pivot may be executed as before. If z=p then the arc (p,q) is
a downward arc and the pivot is nondegenerate. Note that it is
only in the case of a nondegenerate pivot that the entire basis
equivalent path of the entering arc is traversed. Thus it is
only in this case that the complete representation of the enter-

ing arc is computed. This is, of course, substantially different

than for the standard simplex method.
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Steps b and c¢ above can also be accomplished by using the
""distance function'" of [17] which indicates the number of 1links
in the basis tree between a given node and the root node. 1In
particular, the distance function may be used in place of the
cardinality function by reversing all the above inequalities.

d) Flow values on the basis links never have to be checked
to determine the type of pivot. 1In fact it is not necessary to
store the flows at all.

e) The structural property of an AP basis whereby all 1-1inks
are 0-D links allows the basis trece to be easily stored in a
""collapsed" form and makes it unnecessary to store and to update any
flow values. Specifically, the two nodes and connecting arc
associated with an 0-D link may be treated as a single collapsed
node in storing and updating the AB basis. Using this technique,
the basis computer storage requirement of the AB algorithm is
roughly halved. Further the compression reduces the depth of
the basis tree by approximately half. Thus less checking is
required to find node z discussed in c). Also since there are
only half as many nodes in the collapsed tree, this reduces the

work required to update node potentials by fifty percent.

5. COMPUTATIONAL COMPARISON

5.1 Development of a Computer Code

We have embodies the AB algorithm in an in-core computer code
entitled AP-AB. This code is written in FORTRAN, using a modular
design with several subroutines to perform the various updating

operations. The code was given this form for the following reasons:




a) This modular approach simplifies testing of
different updating procedures.

b) Minimal recoding is required to fit different
machine and compiler comventions, and

c) unbiased comparisons can be made with codes that
have not been 'customized'" to a particular machine
or compiler.

One disadvantage of this coding format, of course, is that
the reported times are conservative, since programs which have
been '""tuned" to a particular operating environment execute subs-
tantially faster. To further facilitate unbiased comparisons with
other primal extreme point, out-of-kilter and primal-dual algorithms,
we used the same pivoting procedures as described in [8, 10]. The
code also uses the predecessor [7], thread [12], and distance [17]

functiens to maintain and update the basis data.

5.2 Computational Comparisons

The following computer codes were obtained for comparative
evaluations: SUPERK [3], one of the fastest out-of-kilter codes;
PNET-I [8] the most widely-used primal simplex capacitated trans-
shipment code; ARC-II [2] the fastest primal simplex capacitated
transshipment code; and SUPERT-2 [1], the fastest uncapacitated
transportation code. All of the codes are in-core codes, i.e.,
the program and all of the problem data simultaneously reside in
fast-access memory. They are all coded in FORTRAN and none of

them (including the special purpose primal codes) have been

-



optimized for a particular compiler. It is important to note that
all the codes except for SUPERT-2 and AP-AB codes are designed to
solve capacitated transshipment problems and are not specifically
designed to exploit the special structure of assignment problems.
Further, SUPERT-2 is designed to solve any uncapacitated trans-
portation problem. All of the problems were solved on the CDC

6600 at the University of Texas Computation Center using the RUN
compiler. The computer jobs were executed during periods when the
machine load was approximately the same, and all solution times are
exclusive of input and output. The total time spent solving the

problem was recorded by calling a Real Time Clock upon starting

prore

to solve the problem and again when the solution was obtained.

In addition, we sought tc compare the AP-AB code with a
primal-dual code PD-AAL developed by Decision Systems Associates
(DS) (reported by Hatch [13]). Since the DSA code is proprietary,
we could not obtain a copy of it for comparison. However, we have
solved the same test problems as solved by the DSA code using the
same machine (a CDC-6600). These results are contained in Table I.
It is important to note that it is our understanding that the DSA
code, in contrast to the AP-AB code and the other codes tested,
is fully optimized to exploit the special hardware features of

the CDC-6600. This type of specialization could increase the

performance of all the other codes by a factor of 2 or 3.
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Table 1

TOTAL SOLUTION TIMES ON 200 X 200 ASSIGNMENT PROBLEMS
(IN SECONDS) ON A CDC 6600 WITH A COST RANGE OF 1-100

No. of Arcs 1500 2250 3000 3750 4500 Sum of Times

AP-AB el 1.12 1.48 1.6l 1.68 6.86
ARC TI 1.45 15,95 2.47 2.67 Holls: 1167
PD-AAL 1.65 1.14 1.89 1829 1.80 TS
PNET-1 2.3 S Jal 3.47 3.44 4.79 L7 i
SUPERK 6.44 6.47 7.25 6.95 7.56 34.67
SUPERT -2 126 1557 1.98 g L 2.5% 9..51

A noteworthy feature of the computational results is that AP-AB, PD-AAL,

SUPERT-2, and ARC-II are, in this order, superior to the other codes for
assignment problems. Based on the sum of the solution times, AP-AB is roughly

fifteen percent faster than its closest competitor (the machine-tuned code) and

is roughly fifty percent faster than its next closest competitor. Further, the
computational results of Table II indicate that the AB algorithm reduces the
number of pivots by 25% over the most efficient version of the primal simplex
algorithm that does not make recourse to the AB basis structure. Additionally,
the results indicate that the AB algorithm reduces both the number of degenerate
pivots and the number of nondegenerate pivots on the denser problems. Morcover,
relative reduction in the nondegenerate pivots (that is, the number of extreme
points visited) increases as the number of arcs increase.

These results also indicate that this first implementation of the AB

algorithm is 1 1/2 times more efficient than the fastest uncapacitated primal

simplex transportation code SUPERT-2. Historically, it has always been possible
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to improve the solution speed of the first implementation of an algorithm by

a factor of 2 or 3. Coupling this with the fact that the start and pivot rules
of AP-AB have not been computationally investigated, it would appear by conserva-
tive estimate that the AB algorithm is likely twice as fast as other algorithms

for solving assignment problems.

TABLE II

200 X 200 ASSIGNMENT PROBLEM STATISTICS

No. of Arcs Total Pivots Total Nondegenerate Pivots
Supert-2 AP-AB Supert-2 AP-AB
1500 1420 1248 47 59
2250 1979 1498 62 73
3000 2150 1512 71 73
3750 1736 1356 63 b2
4500 1944 1586 80 70

5.3 Memory Requirements of the Codes

Table III indicates the number of origin, destination, and arc length
arrays required in each of the codes tested for solving assignment problems
except for the PD-AAL code. The storage requirements of this code were not
available. It should be noted that memory requirements of all of the codes
tested were quite close (within 1500 words) excluding the array requirements.

Thus, the important factor in comparing the codes is the number of origin,

destination, and arc length arrays.
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Looking at Table III and keeping in mind that any meaningful
problem has to have more arcs than nodes, it is clear that the AB,
and primal simplex, codes have a distinct advantage (in terms of
memory requirements) over all of the other codes. Further, this
advantage greatly increases as the number of arcs increase. It is
important to note that the AB based code, AP-AB, requires the least
amount of memory of all the codes making it the most suitable pro-

cedure for large scale problems both in terms of efficiency and

memory.
Table III
Code Specifications
Developer Name Type Number of Arrays
Lo tBare Glover AP-AB AB Algorithm 6N + 2A
Klingman
2. Barr SUPERT-2 Primal Simplex Transportation 10N + 2A
5., Barz, Glover; ARC-TI Primal Simplex Network 14N + 2A
Klingman
4, Barr, Glover, SUPERK Out-ot-~-kilter 8N + 9A
Klingman
5. Decision System PD-AAL Primal-Dual Not available
Associates

6. Glover, Karney,

Klingman, Stutz PNET-I Primal Simplex Network 12N + 2A
- 1
N = Number of origins or destinations
A = Number of arcs
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